Context-dependent substroke model for HMM-based on-line handwriting recognition
نویسندگان
چکیده
This paper describes context-dependent substroke hidden Markov models (HMMs) for on-line handwritten recognition of cursive Kanji and Hiragana characters. As there are more than 6,000 distinctive characters including Kanji and Hiragana in Japanese, modeling each character by an HMM leads to an infeasible character-recognition system requiring huge amount of memory and enormous computation time. In order to tackle this problem, we have proposed the substroke HMM approach where a modeling unit “substroke” that is much smaller than a whole character is employed and each character is modeled as a concatenation of only 25 kinds of substroke HMMs. One of the drawback of this approach is that the recognition accuracy deteriorates in case of scribbled characters, and characters where the shape of the substrokes varies a lot. In this paper, we show that the context-dependent substroke modeling which depends on how the substroke connects to the adjacent substrokes is effective to achieve robust recognition of low quality characters. The Successive State Splitting (SSS) algorithm which was mainly developed for speech recognition is employed to construct the context dependent substroke HMMs. Experimental results show that the correct recognition rate improved from 88% to 92% for cursive Kanji handwritings and from 90% to 98% for Hiragana handwritings.
منابع مشابه
Substroke Approach to HMM-Based On-line Kanji Handwriting Recognition
A new method is proposed for on-line handwriting recognition of Kanji characters. The method employs substroke HMMs as minimum units to constitute Japanese Kanji characters and utilizes the direction of pen motion. The main motivation is to fully utilize the continuous speech recognition algorithm by relating sentence speech to Kanji character , phonemes to substrokes, and grammar to Kanji stru...
متن کاملOn-Line Handwriting Recognition Using Hidden Markov Models
New global information-bearing features improved the modeling of individual letters, thus diminishing the error rate of an HMM-based on-line cursive handwriting recognition system. This system also demonstrated the ability to recognize on-line cursive handwriting in real time. The BYBLOS continuous speech recognition system, a hidden Markov model (HMM) based recognition system, is applied to on...
متن کاملOff-line Arabic Handwritten Recognition Using a Novel Hybrid HMM-DNN Model
In order to facilitate the entry of data into the computer and its digitalization, automatic recognition of printed texts and manuscripts is one of the considerable aid to many applications. Research on automatic document recognition started decades ago with the recognition of isolated digits and letters, and today, due to advancements in machine learning methods, efforts are being made to iden...
متن کاملGeneration of Hierarchical Dictionary for Stroke-order Free Kanji Handwriting Recognition Based on Substroke HMM
This paper describes a method of generating a Kanji hierarchical structured dictionary for stroke-number and stroke-order free handwriting recognition based on substroke HMM. In stroke-based methods, a large number of stroke-order variations can be easily expressed by just adding different stroke sequences to the dictionary and it is not necessary to train new reference patterns. The hierarchic...
متن کاملAn Investigation of Context-dependent and Hybrid Modeling Techniques for Very Large Vocabulary On-line Cursive Handwriting Recognition
This paper addresses a very challenging topic in on-line handwriting recognition. It deals with the problem how to further improve a baseline very large vocabulary HMM-based handwriting recognition system with a vocabulary size of 200.000 German words. The use of sophisticated HMM-technology allows the construction of such a baseline system. It is however an extremely difficult task to further ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2002